首页 > 新闻资讯 > 五月ELISA试剂盒火爆*

五月ELISA试剂盒火爆*

2016-05-03 [1124]

   其实是这么回事,用常用的Nile  red荧光染料饲喂的线虫把这种染料当作毒物处理了:染料被隔离到脂肪粒周围的肠类溶酶体颗粒中,而不是脂肪粒中。实际上,这种染料还在别的方面具有误导性:他汀类本身似乎会影响它的染色或者荧光。“在使用荧光基团的时候,有很多假象要考虑到。” 来自位于瑞典查尔姆斯理工大学的Enejder说。
    
没人能够否定荧光探针和分子染色在细胞内行为探测上的实力,但是这种标记办法仍然有诸多问题。如何标记是一个问题,尤其是对整个有机体而言。有些标记只能在已死亡的细胞内有作用;其他的标记标记方法则会损伤细胞,或者干扰所研究的生物过程。非标记的显微技术提供了一种能够大幅度降低人为干扰的活体观察技术。虽然有些技术仍然依赖内源性荧光基团,不过它们基本上可以摒弃荧光技术,也就避免遇到光漂白这个常见问题。这些新技术探测的是光在通过生物样品时被吸收或者改变时发生的微小变化,而不是探测被激发荧光基团的光子。这种办法依赖在高光功率密度下观察到的非线性光学过程。一言以蔽之,激光脉冲可以被用来“看”化学组成:脂质里面的C-H键,蛋白质里的酰胺键,还原态或者氧化态的生物分子,胶凝蛋白或者微管里面有规律地重复的单元。当然,这样的技术也自有其局限性:与荧光标记能够识别单分子相比,非标记技术的灵敏度和特异性都要弱一些。只有特别常见的基团才不会淹没在一些丰富样品产生的信号当中。“这种技术的好处是,你不需要任何标记,你只需要去成像就行了”,信号太弱了,你需要大量能量来照射一个细胞,而可能仅仅得到一些粗枝大叶的细节。
    
这种技术通过一种叫做自发拉曼散射的现象来增强信号。在自发拉曼散射中,样品内的化学键能够改变通过其中的光的波长。更早使用的拉曼散射显微术要求的激光功率很高,而且有时候需要曝光时间长达一天。谢晓亮和他的同事证明,CARS可以用于活细胞研究。通过使用两束激光,它们的频率差等于需要成像化学键的振动频率,细胞产生的微弱的拉曼信号能够被不断放大。“它的灵敏度比自发拉曼散射的灵敏度高了好几个数量级”,谢晓亮说。但是CARS也有缺陷。在同一时间里,它只集中在很宽的拉曼谱中很短的一段,限制了所能采集的信号的数量;同时还带来了很高的背景信号。从实用的角度讲,这些限制意味着如果要应用CARS技术,大部分时间要基于对脂质的探测,因为碳氢键的大量富集能够产生很强的特征信号的合作研究获得对该技术的原理的证据的。谢晓亮甚至预言,SRS技术有一天会取代CARS技术,然而其他研究人员对此有所保留。SRS需要对多个光源的信号进行混合和解读,而谱的叠加也会使去卷积变得困难。他曾经尝试用SRS观察溶液中的核酸,zui后还是决定继续使用原来的老技术。利用那些老技术,就可以从细胞的DNA里分辨出RNA。他说,尽管拉曼显微镜可能慢一些,“但是应用SRS技术来扩展我们的知识也挺费劲的,跟使用传统拉曼技术差不多。”
    采购与分享
    谢晓亮预计,一旦SRS被植入商用系统,很快就会传播开来,他认为早在今年底之前就会取得这样的进展;据报道,蔡司和徕卡已经于去年获得这项技术的授权。然而,就像荧光显微镜的前车之鉴,技术的传播可能相当缓慢。*台商用多光子显微镜于1996年发布;而2003年的一项调查发现,66%使用多光子显微镜的生物学研究仍然使用定制系统。现在,商用多光子显微镜则相当普遍。
   
样的光源,切换到共聚焦拉曼来做同一个区域更详细的化学成分分析。新近关于人类前列腺肿瘤细胞的研究发现,先前被认为由脂肪组成的区域,实际上是被氧化的脂肪酸。下一步是考察这种脂肪酸会否可以用于标记前列腺癌的严重性。在别的项目中,程继新已经发展了一个平台,可自动收集CARS信号的来观测脂肪,还利用一种叫做和频产生的技术看到特定的蛋白纤维。有了这种技术,程继新及其合作者们可以研究富脂免疫细胞如何将自己嵌入到血管壁的胶原蛋白基质中去的——这类观测可以揭示动脉粥样硬化中的血块是如何形成的。程继新和他的同事还独立监测了多发性硬化症的老鼠模型中的神经元髓鞘,并且地指出是轴突的某个地方出现了损伤。他说,“以前在活体组织中对髓鞘的监测是没有办法达到单细胞水平的,髓鞘因为紧密堆积了大量脂质,特别适合用CARS成像。非标记显微技术在其他方面的应用则可能没那么容易。他说经常使用激光器的研究人员很可能会想办法采用这样的技术,他补充道,“技术上讲,这是*可行的,但是如果我能用另一种方式来获得同样的信息,我为什么要采用这个多少有些复杂而且昂贵的
  
问题在于,能够很好地实现这一目标的分子非常少。为了达到好的效果,Yuste说,“你需要非常仔细地去扫描全谱,来寻找潜在的内源性二次谐波发色基团。”他说,发展这种技术需要依赖学科交叉,需要研究人员在他们研究领域的边缘工作。但是在现实中,这种工作往往在研究者们自己的系里得不到足够的资金和支持,这也是为什么能够实现这一目标的分子资源较少的原因。
   
Enejder等人相信,学科交叉能够帮助人们解决大量只能由非标记的非线性显微技术来观测的问题。虽然Enejder的背景的是物理学,她还是转到了生物系。因为在那里可以更容易的了解生物学家们在成像上到底遇到了什么问题,非线性光学如何才能帮得上忙。她说,那些把自己的眼光牢牢地局限在物理系内部的人可以继续优化技术,但是他们或许不了解生物学家到底希望看到什么:“我就*没有这个问题。在我眼里,应用随处可见仅仅依赖别人文章里说的哪些可以观测是不行的,你得自己去试才行。”